3.3.25 \(\int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx\) [225]

3.3.25.1 Optimal result
3.3.25.2 Mathematica [C] (verified)
3.3.25.3 Rubi [A] (verified)
3.3.25.4 Maple [A] (verified)
3.3.25.5 Fricas [C] (verification not implemented)
3.3.25.6 Sympy [F(-1)]
3.3.25.7 Maxima [F]
3.3.25.8 Giac [F]
3.3.25.9 Mupad [F(-1)]

3.3.25.1 Optimal result

Integrand size = 25, antiderivative size = 178 \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx=-\frac {22 a^4 (e \cos (c+d x))^{3/2}}{9 d e}+\frac {22 a^4 \sqrt {e \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d \sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2} (a+a \sin (c+d x))^3}{9 d e}-\frac {10 (e \cos (c+d x))^{3/2} \left (a^2+a^2 \sin (c+d x)\right )^2}{21 d e}-\frac {22 (e \cos (c+d x))^{3/2} \left (a^4+a^4 \sin (c+d x)\right )}{21 d e} \]

output
-22/9*a^4*(e*cos(d*x+c))^(3/2)/d/e-2/9*a*(e*cos(d*x+c))^(3/2)*(a+a*sin(d*x 
+c))^3/d/e-10/21*(e*cos(d*x+c))^(3/2)*(a^2+a^2*sin(d*x+c))^2/d/e-22/21*(e* 
cos(d*x+c))^(3/2)*(a^4+a^4*sin(d*x+c))/d/e+22/3*a^4*(cos(1/2*d*x+1/2*c)^2) 
^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(e*cos(d*x 
+c))^(1/2)/d/cos(d*x+c)^(1/2)
 
3.3.25.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.04 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.37 \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx=-\frac {32\ 2^{3/4} a^4 (e \cos (c+d x))^{3/2} \operatorname {Hypergeometric2F1}\left (-\frac {15}{4},\frac {3}{4},\frac {7}{4},\frac {1}{2} (1-\sin (c+d x))\right )}{3 d e (1+\sin (c+d x))^{3/4}} \]

input
Integrate[Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^4,x]
 
output
(-32*2^(3/4)*a^4*(e*Cos[c + d*x])^(3/2)*Hypergeometric2F1[-15/4, 3/4, 7/4, 
 (1 - Sin[c + d*x])/2])/(3*d*e*(1 + Sin[c + d*x])^(3/4))
 
3.3.25.3 Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.05, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3157, 3042, 3157, 3042, 3157, 3042, 3148, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (c+d x)+a)^4 \sqrt {e \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (c+d x)+a)^4 \sqrt {e \cos (c+d x)}dx\)

\(\Big \downarrow \) 3157

\(\displaystyle \frac {5}{3} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^3dx-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{3} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^3dx-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3157

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^2dx-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)^2dx-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3157

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \left (\frac {7}{5} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)dx-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \left (\frac {7}{5} a \int \sqrt {e \cos (c+d x)} (\sin (c+d x) a+a)dx-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3148

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \left (\frac {7}{5} a \left (a \int \sqrt {e \cos (c+d x)}dx-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \left (\frac {7}{5} a \left (a \int \sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \left (\frac {7}{5} a \left (\frac {a \sqrt {e \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \left (\frac {7}{5} a \left (\frac {a \sqrt {e \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {5}{3} a \left (\frac {11}{7} a \left (\frac {7}{5} a \left (\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {e \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {2 a (e \cos (c+d x))^{3/2}}{3 d e}\right )-\frac {2 \left (a^2 \sin (c+d x)+a^2\right ) (e \cos (c+d x))^{3/2}}{5 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^2 (e \cos (c+d x))^{3/2}}{7 d e}\right )-\frac {2 a (a \sin (c+d x)+a)^3 (e \cos (c+d x))^{3/2}}{9 d e}\)

input
Int[Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^4,x]
 
output
(-2*a*(e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])^3)/(9*d*e) + (5*a*((-2*a 
*(e*Cos[c + d*x])^(3/2)*(a + a*Sin[c + d*x])^2)/(7*d*e) + (11*a*((7*a*((-2 
*a*(e*Cos[c + d*x])^(3/2))/(3*d*e) + (2*a*Sqrt[e*Cos[c + d*x]]*EllipticE[( 
c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]])))/5 - (2*(e*Cos[c + d*x])^(3/2)*(a^ 
2 + a^2*Sin[c + d*x]))/(5*d*e)))/7))/3
 

3.3.25.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3148
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + 
 Simp[a   Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && 
 (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
 

rule 3157
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + 
f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p))   Int[(g* 
Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + p, 0] && Integers 
Q[2*m, 2*p]
 
3.3.25.4 Maple [A] (verified)

Time = 10.03 (sec) , antiderivative size = 258, normalized size of antiderivative = 1.45

method result size
default \(\frac {2 a^{4} e \left (224 \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-448 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+576 \left (\sin ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-392 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-1152 \left (\sin ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+616 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+192 \left (\sin ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-168 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+231 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+384 \left (\sin ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-132 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{63 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, d}\) \(258\)
parts \(\frac {2 a^{4} \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, e \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-e \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}-\frac {8 a^{4} \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, e \left (40 \left (\cos ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+118 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-36 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{45 \sqrt {-e \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}-\frac {8 a^{4} \left (e \cos \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d e}+\frac {24 a^{4} \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, e \left (4 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 \sqrt {-e \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {e \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\, d}+\frac {8 a^{4} \left (\frac {\left (e \cos \left (d x +c \right )\right )^{\frac {7}{2}}}{7}-\frac {e^{2} \left (e \cos \left (d x +c \right )\right )^{\frac {3}{2}}}{3}\right )}{d \,e^{3}}\) \(625\)

input
int((a+a*sin(d*x+c))^4*(e*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
2/63/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*a^4*e*(224*sin 
(1/2*d*x+1/2*c)^10*cos(1/2*d*x+1/2*c)-448*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1 
/2*c)^8+576*sin(1/2*d*x+1/2*c)^9-392*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2* 
c)-1152*sin(1/2*d*x+1/2*c)^7+616*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+1 
92*sin(1/2*d*x+1/2*c)^5-168*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+231*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2))+384*sin(1/2*d*x+1/2*c)^3-132*sin(1/2*d*x+1/2*c))/d
 
3.3.25.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.78 \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx=\frac {231 i \, \sqrt {2} a^{4} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 231 i \, \sqrt {2} a^{4} \sqrt {e} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (36 \, a^{4} \cos \left (d x + c\right )^{3} - 168 \, a^{4} \cos \left (d x + c\right ) + 7 \, {\left (a^{4} \cos \left (d x + c\right )^{3} - 13 \, a^{4} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )} \sqrt {e \cos \left (d x + c\right )}}{63 \, d} \]

input
integrate((a+a*sin(d*x+c))^4*(e*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/63*(231*I*sqrt(2)*a^4*sqrt(e)*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 231*I*sqrt(2)*a^4*sqrt(e)*weiers 
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) 
) + 2*(36*a^4*cos(d*x + c)^3 - 168*a^4*cos(d*x + c) + 7*(a^4*cos(d*x + c)^ 
3 - 13*a^4*cos(d*x + c))*sin(d*x + c))*sqrt(e*cos(d*x + c)))/d
 
3.3.25.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx=\text {Timed out} \]

input
integrate((a+a*sin(d*x+c))**4*(e*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.3.25.7 Maxima [F]

\[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx=\int { \sqrt {e \cos \left (d x + c\right )} {\left (a \sin \left (d x + c\right ) + a\right )}^{4} \,d x } \]

input
integrate((a+a*sin(d*x+c))^4*(e*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)^4, x)
 
3.3.25.8 Giac [F]

\[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx=\int { \sqrt {e \cos \left (d x + c\right )} {\left (a \sin \left (d x + c\right ) + a\right )}^{4} \,d x } \]

input
integrate((a+a*sin(d*x+c))^4*(e*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)^4, x)
 
3.3.25.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^4 \, dx=\int \sqrt {e\,\cos \left (c+d\,x\right )}\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^4 \,d x \]

input
int((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^4,x)
 
output
int((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^4, x)